Artwork

Content provided by meQuanics. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by meQuanics or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

meQuanics - QSI@UTS Seminar Series - S08 - Guillaume Verdon (X)

1:11:39
 
Share
 

Manage episode 305948170 series 1277392
Content provided by meQuanics. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by meQuanics or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

During this time of lockdown, the centre for quantum software and information (QSI) at the University of Technology Sydney has launched an online seminar series. With talks once or twice a week from leading researchers in the field, meQuanics is supporting this series by mirroring the audio from each talk. I would encourage if you listen to this episode, to visit and subscribe to the UTS:QSI YouTube page to see each of these talks with the associated slides to help it make more sense.

Building better deep learning representations for quantum mixed states by adding quantum layers to classical probabilistic models.

TITLE: Quantum-probabilistic Generative Models and Variational Quantum Thermalization

SPEAKER: Guillaume Verdon

AFFILIATION: X (formerly Google X), California, USA

HOSTED BY: A/Prof. Chris Ferrie, Centre for Quantum Software and Information

ABSTRACT: We introduce a new class of generative quantum-neural-network-based models called Quantum Hamiltonian-Based Models (QHBMs). In doing so, we establish a paradigmatic approach for quantum-probabilistic hybrid variational learning of quantum mixed states, where we efficiently decompose the tasks of learning classical and quantum correlations in a way which maximizes the utility of both classical and quantum processors. In addition, we introduce the Variational Quantum Thermalizer (VQT) algorithm for generating the thermal state of a given Hamiltonian and target temperature, a task for which QHBMs are naturally well-suited. The VQT can be seen as a generalization of the Variational Quantum Eigensolver (VQE) to thermal states: we show that the VQT converges to the VQE in the zero temperature limit. We provide numerical results demonstrating the efficacy of these techniques in several illustrative examples. In addition to the introduction to the theory and applications behind these models, we will briefly walk through their numerical implementation in TensorFlow Quantum.

RELATED ARTICLES: Quantum Hamiltonian-Based Models and the Variational Quantum Thermalizer Algorithm: https://arxiv.org/abs/1910.02071

TensorFlow Quantum: A Software Framework for Quantum Machine Learning: https://arxiv.org/abs/2003.02989

OTHER LINKS: X: https://x.company/

  continue reading

82 episodes

Artwork
iconShare
 
Manage episode 305948170 series 1277392
Content provided by meQuanics. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by meQuanics or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

During this time of lockdown, the centre for quantum software and information (QSI) at the University of Technology Sydney has launched an online seminar series. With talks once or twice a week from leading researchers in the field, meQuanics is supporting this series by mirroring the audio from each talk. I would encourage if you listen to this episode, to visit and subscribe to the UTS:QSI YouTube page to see each of these talks with the associated slides to help it make more sense.

Building better deep learning representations for quantum mixed states by adding quantum layers to classical probabilistic models.

TITLE: Quantum-probabilistic Generative Models and Variational Quantum Thermalization

SPEAKER: Guillaume Verdon

AFFILIATION: X (formerly Google X), California, USA

HOSTED BY: A/Prof. Chris Ferrie, Centre for Quantum Software and Information

ABSTRACT: We introduce a new class of generative quantum-neural-network-based models called Quantum Hamiltonian-Based Models (QHBMs). In doing so, we establish a paradigmatic approach for quantum-probabilistic hybrid variational learning of quantum mixed states, where we efficiently decompose the tasks of learning classical and quantum correlations in a way which maximizes the utility of both classical and quantum processors. In addition, we introduce the Variational Quantum Thermalizer (VQT) algorithm for generating the thermal state of a given Hamiltonian and target temperature, a task for which QHBMs are naturally well-suited. The VQT can be seen as a generalization of the Variational Quantum Eigensolver (VQE) to thermal states: we show that the VQT converges to the VQE in the zero temperature limit. We provide numerical results demonstrating the efficacy of these techniques in several illustrative examples. In addition to the introduction to the theory and applications behind these models, we will briefly walk through their numerical implementation in TensorFlow Quantum.

RELATED ARTICLES: Quantum Hamiltonian-Based Models and the Variational Quantum Thermalizer Algorithm: https://arxiv.org/abs/1910.02071

TensorFlow Quantum: A Software Framework for Quantum Machine Learning: https://arxiv.org/abs/2003.02989

OTHER LINKS: X: https://x.company/

  continue reading

82 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play