Artwork

Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Product Management in Machine Learning // Laszlo Sragner // MLOps Meetup #54

57:55
 
Share
 

Manage episode 313294464 series 3241972
Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

MLOps community meetup #54! Last Wednesday we talked to Laszlo Sragner, Founder, Hypergolic.
// Abstract:
How my experience in quant finance and software engineering influenced how we ran ML at a London Fintech Startup. How to solve business problems with incremental ML? What's the difference between academic and industrial ML?
// Bio:
Laszlo worked as a quant researcher at multiple investment managers and as a DS at the world's largest mobile gaming company. As Head of Data Science at Arkera, he drove the company's data strategy delivering solutions to Tier 1 investment banks and hedge funds. He currently runs Hypergolic (hypergolic.co.uk) an ML Consulting company helping startups and enterprises bring the maximum out of their data and ML operations.
// Takeaways
Continuous evaluation and monitoring is indistinguishable in a well set up product team. Separation of concerns (SE, ML, DevOps, MLOps) is very important for smooth operation, low friction team coordination/communication is key.
To be able to iterate business features into models you need a modelling framework that can express these which is usually a DL package.
DS-es are well motivated to go more technical because they see the rewards of it. All well run (from DS perspective) startups in my experience do the same.
// Other Links
Free eBook about MLPM: https://machinelearningproductmanual.com/
Lightweight MLOps Python package: https://hypergol.ml/
Blog: laszlo.substack.com
----------- Connect With Us ✌️-------------
Join our Slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Laszlo on LinkedIn: https://www.linkedin.com/in/laszlosragner/
Timestamps:
[00:00] Introduction to Laszlo Sranger
[02:15] Laszlo's Background
[09:18] Being a Quant, then influenced, what you were doing with the Investment Banks?
[12:24] Do you think this can be applied in different use cases or specific to what you are doing?
[14:41] Do you have any thoughts of a potentially highly opinionated person?
[16:54] Product management in Machine Learning
[24:59] You have to be at a large company or you have to have a large team? [26:38] What are your thoughts on MLOps products helping with product management for ML? Is it an overreach or scope creep?
[32:00] In the messy world of startups due to the big cost of an MVP for NLP is RegEx which means to user feedbacks it's incorporated by tweaking RegEx?
[33:04] Does the ensemble recent models more than older models? If so, what is the decay rate of weights for older models?
[35:40] Since the iterative management model is generic enough for most ML projects, which component of it can be easily generalized and tools built for version control?
[36:38] Topic Extraction: What type of model do you train for that task?
[52:55] Thoughts on Notebooks
[53:34] "I don't hate notebooks. Let's be clear about that. I put it this way, notebooks are whiteboards. You don't want your whiteboards to be your output because it's a sketch of your solution. You want the purest solution."

  continue reading

457 episodes

Artwork
iconShare
 
Manage episode 313294464 series 3241972
Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

MLOps community meetup #54! Last Wednesday we talked to Laszlo Sragner, Founder, Hypergolic.
// Abstract:
How my experience in quant finance and software engineering influenced how we ran ML at a London Fintech Startup. How to solve business problems with incremental ML? What's the difference between academic and industrial ML?
// Bio:
Laszlo worked as a quant researcher at multiple investment managers and as a DS at the world's largest mobile gaming company. As Head of Data Science at Arkera, he drove the company's data strategy delivering solutions to Tier 1 investment banks and hedge funds. He currently runs Hypergolic (hypergolic.co.uk) an ML Consulting company helping startups and enterprises bring the maximum out of their data and ML operations.
// Takeaways
Continuous evaluation and monitoring is indistinguishable in a well set up product team. Separation of concerns (SE, ML, DevOps, MLOps) is very important for smooth operation, low friction team coordination/communication is key.
To be able to iterate business features into models you need a modelling framework that can express these which is usually a DL package.
DS-es are well motivated to go more technical because they see the rewards of it. All well run (from DS perspective) startups in my experience do the same.
// Other Links
Free eBook about MLPM: https://machinelearningproductmanual.com/
Lightweight MLOps Python package: https://hypergol.ml/
Blog: laszlo.substack.com
----------- Connect With Us ✌️-------------
Join our Slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Laszlo on LinkedIn: https://www.linkedin.com/in/laszlosragner/
Timestamps:
[00:00] Introduction to Laszlo Sranger
[02:15] Laszlo's Background
[09:18] Being a Quant, then influenced, what you were doing with the Investment Banks?
[12:24] Do you think this can be applied in different use cases or specific to what you are doing?
[14:41] Do you have any thoughts of a potentially highly opinionated person?
[16:54] Product management in Machine Learning
[24:59] You have to be at a large company or you have to have a large team? [26:38] What are your thoughts on MLOps products helping with product management for ML? Is it an overreach or scope creep?
[32:00] In the messy world of startups due to the big cost of an MVP for NLP is RegEx which means to user feedbacks it's incorporated by tweaking RegEx?
[33:04] Does the ensemble recent models more than older models? If so, what is the decay rate of weights for older models?
[35:40] Since the iterative management model is generic enough for most ML projects, which component of it can be easily generalized and tools built for version control?
[36:38] Topic Extraction: What type of model do you train for that task?
[52:55] Thoughts on Notebooks
[53:34] "I don't hate notebooks. Let's be clear about that. I put it this way, notebooks are whiteboards. You don't want your whiteboards to be your output because it's a sketch of your solution. You want the purest solution."

  continue reading

457 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play