Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
Content provided by Jay Shah. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jay Shah or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!
Go offline with the Player FM app!
Instruction Tuning, Prompt Engineering and Self Improving Large Language Models | Dr. Swaroop Mishra
MP3•Episode home
Manage episode 428058232 series 2859018
Content provided by Jay Shah. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jay Shah or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Swaroop is a research scientist at Google-Deepmind, working on improving Gemini. His research expertise includes instruction tuning and different prompt engineering techniques to improve reasoning and generalization performance in large language models (LLMs) and tackle induced biases in training. Before joining DeepMind, Swaroop graduated from Arizona State University, where his research focused on developing methods that allow models to learn new tasks from instructions. Swaroop has also interned at Microsoft, Allen AI, and Google, and his research on instruction tuning has been influential in the recent developments of LLMs. Time stamps of the conversation: 00:00:50 Introduction 00:01:40 Entry point in AI 00:03:08 Motivation behind Instruction tuning in LLMs 00:08:40 Generalizing to unseen tasks 00:14:05 Prompt engineering vs. Instruction Tuning 00:18:42 Does prompt engineering induce bias? 00:21:25 Future of prompt engineering 00:27:48 Quality checks on Instruction tuning dataset 00:34:27 Future applications of LLMs 00:42:20 Trip planning using LLM 00:47:30 Scaling AI models vs making them efficient 00:52:05 Reasoning abilities of LLMs in mathematics 00:57:16 LLM-based approaches vs. traditional AI 01:00:46 Benefits of doing research internships in industry 01:06:15 Should I work on LLM-related research? 01:09:45 Narrowing down your research interest 01:13:05 Skills needed to be a researcher in industry 01:22:38 On publish or perish culture in AI research More about Swaroop: https://swarooprm.github.io/ And his research works: https://scholar.google.com/citations?user=-7LK2SwAAAAJ&hl=en Twitter: https://x.com/Swarooprm7 About the Host: Jay is a PhD student at Arizona State University working on improving AI for medical diagnosis and prognosis. Linkedin: https://www.linkedin.com/in/shahjay22/ Twitter: https://twitter.com/jaygshah22 Homepage: https://www.public.asu.edu/~jgshah1/ for any queries. Stay tuned for upcoming webinars! ***Disclaimer: The information in this video represents the views and opinions of the speaker and does not necessarily represent the views or opinions of any institution. It does not constitute an endorsement by any Institution or its affiliates of such video content.***
…
continue reading
95 episodes
Instruction Tuning, Prompt Engineering and Self Improving Large Language Models | Dr. Swaroop Mishra
MP3•Episode home
Manage episode 428058232 series 2859018
Content provided by Jay Shah. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jay Shah or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Swaroop is a research scientist at Google-Deepmind, working on improving Gemini. His research expertise includes instruction tuning and different prompt engineering techniques to improve reasoning and generalization performance in large language models (LLMs) and tackle induced biases in training. Before joining DeepMind, Swaroop graduated from Arizona State University, where his research focused on developing methods that allow models to learn new tasks from instructions. Swaroop has also interned at Microsoft, Allen AI, and Google, and his research on instruction tuning has been influential in the recent developments of LLMs. Time stamps of the conversation: 00:00:50 Introduction 00:01:40 Entry point in AI 00:03:08 Motivation behind Instruction tuning in LLMs 00:08:40 Generalizing to unseen tasks 00:14:05 Prompt engineering vs. Instruction Tuning 00:18:42 Does prompt engineering induce bias? 00:21:25 Future of prompt engineering 00:27:48 Quality checks on Instruction tuning dataset 00:34:27 Future applications of LLMs 00:42:20 Trip planning using LLM 00:47:30 Scaling AI models vs making them efficient 00:52:05 Reasoning abilities of LLMs in mathematics 00:57:16 LLM-based approaches vs. traditional AI 01:00:46 Benefits of doing research internships in industry 01:06:15 Should I work on LLM-related research? 01:09:45 Narrowing down your research interest 01:13:05 Skills needed to be a researcher in industry 01:22:38 On publish or perish culture in AI research More about Swaroop: https://swarooprm.github.io/ And his research works: https://scholar.google.com/citations?user=-7LK2SwAAAAJ&hl=en Twitter: https://x.com/Swarooprm7 About the Host: Jay is a PhD student at Arizona State University working on improving AI for medical diagnosis and prognosis. Linkedin: https://www.linkedin.com/in/shahjay22/ Twitter: https://twitter.com/jaygshah22 Homepage: https://www.public.asu.edu/~jgshah1/ for any queries. Stay tuned for upcoming webinars! ***Disclaimer: The information in this video represents the views and opinions of the speaker and does not necessarily represent the views or opinions of any institution. It does not constitute an endorsement by any Institution or its affiliates of such video content.***
…
continue reading
95 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.