Artwork

Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

BI 209 Aran Nayebi: The NeuroAI Turing Test

1:43:59
 
Share
 

Manage episode 479559018 series 3662073
Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Support the show to get full episodes, full archive, and join the Discord community.

The Transmitter is an online publication that aims to deliver useful information, insights and tools to build bridges across neuroscience and advance research. Visit thetransmitter.org to explore the latest neuroscience news and perspectives, written by journalists and scientists.

Read more about our partnership.

Sign up for the “Brain Inspired” email alerts to be notified every time a new “Brain Inspired” episode is released.

To explore more neuroscience news and perspectives, visit thetransmitter.org.

Aran Nayebi is an Assistant Professor at Carnegie Mellon University in the Machine Learning Department. He was there in the early days of using convolutional neural networks to explain how our brains perform object recognition, and since then he's a had a whirlwind trajectory through different AI architectures and algorithms and how they relate to biological architectures and algorithms, so we touch on some of what he has studied in that regard. But he also recently started his own lab, at CMU, and he has plans to integrate much of what he has learned to eventually develop autonomous agents that perform the tasks we want them to perform in similar at least ways that our brains perform them. So we discuss his ongoing plans to reverse-engineer our intelligence to build useful cognitive architectures of that sort.

We also discuss Aran's suggestion that, at least in the NeuroAI world, the Turing test needs to be updated to include some measure of similarity of the internal representations used to achieve the various tasks the models perform. By internal representations, as we discuss, he means the population-level activity in the neural networks, not the mental representations philosophy of mind often refers to, or other philosophical notions of the term representation.

0:00 - Intro 5:24 - Background 20:46 - Building embodied agents 33:00 - Adaptability 49:25 - Marr's levels 54:12 - Sensorimotor loop and intrinsic goals 1:00:05 - NeuroAI Turing Test 1:18:18 - Representations 1:28:18 - How to know what to measure 1:32:56 - AI safety

  continue reading

99 episodes

Artwork
iconShare
 
Manage episode 479559018 series 3662073
Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Support the show to get full episodes, full archive, and join the Discord community.

The Transmitter is an online publication that aims to deliver useful information, insights and tools to build bridges across neuroscience and advance research. Visit thetransmitter.org to explore the latest neuroscience news and perspectives, written by journalists and scientists.

Read more about our partnership.

Sign up for the “Brain Inspired” email alerts to be notified every time a new “Brain Inspired” episode is released.

To explore more neuroscience news and perspectives, visit thetransmitter.org.

Aran Nayebi is an Assistant Professor at Carnegie Mellon University in the Machine Learning Department. He was there in the early days of using convolutional neural networks to explain how our brains perform object recognition, and since then he's a had a whirlwind trajectory through different AI architectures and algorithms and how they relate to biological architectures and algorithms, so we touch on some of what he has studied in that regard. But he also recently started his own lab, at CMU, and he has plans to integrate much of what he has learned to eventually develop autonomous agents that perform the tasks we want them to perform in similar at least ways that our brains perform them. So we discuss his ongoing plans to reverse-engineer our intelligence to build useful cognitive architectures of that sort.

We also discuss Aran's suggestion that, at least in the NeuroAI world, the Turing test needs to be updated to include some measure of similarity of the internal representations used to achieve the various tasks the models perform. By internal representations, as we discuss, he means the population-level activity in the neural networks, not the mental representations philosophy of mind often refers to, or other philosophical notions of the term representation.

0:00 - Intro 5:24 - Background 20:46 - Building embodied agents 33:00 - Adaptability 49:25 - Marr's levels 54:12 - Sensorimotor loop and intrinsic goals 1:00:05 - NeuroAI Turing Test 1:18:18 - Representations 1:28:18 - How to know what to measure 1:32:56 - AI safety

  continue reading

99 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play