Artwork

Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Streamlining Thousands of Data Pipelines at Lyft with Yunhao Qing

19:34
 
Share
 

Manage episode 493031761 series 2948506
Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Managing data pipelines at scale is not just a technical challenge. It is also an organizational one. At Lyft, success means empowering dozens of teams to build with autonomy while enforcing governance and best practices across thousands of workflows.

In this episode, we speak with Yunhao Qing, Software Engineer at Lyft, about building a governed data-engineering platform powered by Airflow that balances flexibility, standardization and scale.

Key Takeaways:

(03:17) Supporting internal teams with a centralized orchestration platform.

(04:54) Migrating to a managed service to reduce infrastructure overhead.

(06:04) Embedding platform-level governance into custom components.

(08:02) Consolidating and regulating the creation of custom code.

(09:48) Identifying and correcting inefficient workflow patterns.

(11:17) Replacing manual workarounds with native platform features.

(14:32) Preparing teams for major version upgrades.

(16:03) Leveraging asset-based scheduling for smarter triggers.

(18:13) Envisioning GenAI and semantic search for future productivity.

Resources Mentioned:

Yunhao Qing

https://www.linkedin.com/in/yunhao-qing

Lyft | LinkedIn

https://www.linkedin.com/company/lyft/

Lyft | Website

https://www.lyft.com/

Apache Airflow

https://airflow.apache.org/

Astronomer

https://www.astronomer.io/

Kubernetes

https://kubernetes.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

63 episodes

Artwork
iconShare
 
Manage episode 493031761 series 2948506
Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Managing data pipelines at scale is not just a technical challenge. It is also an organizational one. At Lyft, success means empowering dozens of teams to build with autonomy while enforcing governance and best practices across thousands of workflows.

In this episode, we speak with Yunhao Qing, Software Engineer at Lyft, about building a governed data-engineering platform powered by Airflow that balances flexibility, standardization and scale.

Key Takeaways:

(03:17) Supporting internal teams with a centralized orchestration platform.

(04:54) Migrating to a managed service to reduce infrastructure overhead.

(06:04) Embedding platform-level governance into custom components.

(08:02) Consolidating and regulating the creation of custom code.

(09:48) Identifying and correcting inefficient workflow patterns.

(11:17) Replacing manual workarounds with native platform features.

(14:32) Preparing teams for major version upgrades.

(16:03) Leveraging asset-based scheduling for smarter triggers.

(18:13) Envisioning GenAI and semantic search for future productivity.

Resources Mentioned:

Yunhao Qing

https://www.linkedin.com/in/yunhao-qing

Lyft | LinkedIn

https://www.linkedin.com/company/lyft/

Lyft | Website

https://www.lyft.com/

Apache Airflow

https://airflow.apache.org/

Astronomer

https://www.astronomer.io/

Kubernetes

https://kubernetes.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

63 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play