Artwork

Content provided by Pragmatic AI Labs and Noah Gift. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Pragmatic AI Labs and Noah Gift or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Logging and Tracing Are Data Science For Production Software

10:04
 
Share
 

Manage episode 468659232 series 3610932
Content provided by Pragmatic AI Labs and Noah Gift. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Pragmatic AI Labs and Noah Gift or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Tracing vs. Logging in Production Systems

Core Concepts

  • Logging & Tracing = "Data Science for Production Software"
    • Essential for understanding system behavior at scale
    • Provides insights when services are invoked millions of times monthly
    • Often overlooked by beginners focused solely on functionality

Fundamental Differences

  • Logging

    • Point-in-time event records
    • Captures discrete events without inherent relationships
    • Traditionally unstructured/semi-structured text
    • Stateless: each log line exists independently
    • Examples: errors, state changes, transactions
  • Tracing

    • Request-scoped observation across system boundaries
    • Maps relationships between operations with timing data
    • Contains parent-child hierarchies
    • Stateful: spans relate to each other within context
    • Examples: end-to-end request flows, cross-service dependencies

Technical Implementation

  • Logging Implementation

    • Levels: ERROR, WARN, INFO, DEBUG
    • Manual context addition (critical for meaningful analysis)
    • Storage optimized for text search and pattern matching
    • Advantage: simplicity, low overhead, toggleable verbosity
  • Tracing Implementation

    • Spans represent operations with start/end times
    • Context propagation via headers or messaging metadata
    • Sampling decisions at trace inception
    • Storage optimized for causal graphs and timing analysis
    • Higher network overhead and integration complexity

Use Cases

  • When to Use Logging

    • Component-specific debugging
    • Audit trail requirements
    • Simple deployment architectures
    • Resource-constrained environments
  • When to Use Tracing

    • Performance bottleneck identification
    • Distributed transaction monitoring
    • Root cause analysis across service boundaries
    • Microservice and serverless architectures

Modern Convergence

  • Structured Logging

    • JSON formats enable better analysis and metrics generation
    • Correlation IDs link related events
  • Unified Observability

    • OpenTelemetry combines metrics, logs, and traces
    • Context propagation standardization
    • Multiple views of system behavior (CPU, logs, transaction flow)

Rust Implementation

  • Logging Foundation

    • log crate: de facto standard
    • Log macros: error!, warn!, info!, debug!, trace!
    • Environmental configuration for level toggling
  • Tracing Infrastructure

    • tracing crate for next-generation instrumentation
    • instrument, span!, event! macros
    • Subscriber model for telemetry processing
    • Native integration with async ecosystem (Tokio)
    • Web framework support (Actix, etc.)

Key Implementation Consideration

  • Transaction IDs
    • Critical for linking events across distributed services
    • Must span entire request lifecycle
    • Enables correlation of multi-step operations

🔥 Hot Course Offers:

🚀 Level Up Your Career:

Learn end-to-end ML engineering from industry veterans at PAIML.COM

  continue reading

213 episodes

Artwork
iconShare
 
Manage episode 468659232 series 3610932
Content provided by Pragmatic AI Labs and Noah Gift. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Pragmatic AI Labs and Noah Gift or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Tracing vs. Logging in Production Systems

Core Concepts

  • Logging & Tracing = "Data Science for Production Software"
    • Essential for understanding system behavior at scale
    • Provides insights when services are invoked millions of times monthly
    • Often overlooked by beginners focused solely on functionality

Fundamental Differences

  • Logging

    • Point-in-time event records
    • Captures discrete events without inherent relationships
    • Traditionally unstructured/semi-structured text
    • Stateless: each log line exists independently
    • Examples: errors, state changes, transactions
  • Tracing

    • Request-scoped observation across system boundaries
    • Maps relationships between operations with timing data
    • Contains parent-child hierarchies
    • Stateful: spans relate to each other within context
    • Examples: end-to-end request flows, cross-service dependencies

Technical Implementation

  • Logging Implementation

    • Levels: ERROR, WARN, INFO, DEBUG
    • Manual context addition (critical for meaningful analysis)
    • Storage optimized for text search and pattern matching
    • Advantage: simplicity, low overhead, toggleable verbosity
  • Tracing Implementation

    • Spans represent operations with start/end times
    • Context propagation via headers or messaging metadata
    • Sampling decisions at trace inception
    • Storage optimized for causal graphs and timing analysis
    • Higher network overhead and integration complexity

Use Cases

  • When to Use Logging

    • Component-specific debugging
    • Audit trail requirements
    • Simple deployment architectures
    • Resource-constrained environments
  • When to Use Tracing

    • Performance bottleneck identification
    • Distributed transaction monitoring
    • Root cause analysis across service boundaries
    • Microservice and serverless architectures

Modern Convergence

  • Structured Logging

    • JSON formats enable better analysis and metrics generation
    • Correlation IDs link related events
  • Unified Observability

    • OpenTelemetry combines metrics, logs, and traces
    • Context propagation standardization
    • Multiple views of system behavior (CPU, logs, transaction flow)

Rust Implementation

  • Logging Foundation

    • log crate: de facto standard
    • Log macros: error!, warn!, info!, debug!, trace!
    • Environmental configuration for level toggling
  • Tracing Infrastructure

    • tracing crate for next-generation instrumentation
    • instrument, span!, event! macros
    • Subscriber model for telemetry processing
    • Native integration with async ecosystem (Tokio)
    • Web framework support (Actix, etc.)

Key Implementation Consideration

  • Transaction IDs
    • Critical for linking events across distributed services
    • Must span entire request lifecycle
    • Enables correlation of multi-step operations

🔥 Hot Course Offers:

🚀 Level Up Your Career:

Learn end-to-end ML engineering from industry veterans at PAIML.COM

  continue reading

213 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play