The American healthcare system is one of the most innovative in the world. But it’s also riddled with complex challenges, such as access to affordable medications, inefficiency and administrative burdens, and communication barriers between providers. There’s clearly a better way—and at Surescripts, we have a unique sightline into what that may be. In this series, host Melanie Marcus, Chief Marketing Officer of Surescripts, sits down with today’s most inspiring and innovative leaders in healt ...
…
continue reading
Content provided by Charles M Wood. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Charles M Wood or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!
Go offline with the Player FM app!
Navigating Expertise Gaps - ML 172
MP3•Episode home
Manage episode 449604392 series 2977446
Content provided by Charles M Wood. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Charles M Wood or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
In today's episode, Ben and Michael discuss how to handle situations involving individuals lacking expertise in machine learning projects. They explore scenarios where a team lacks expertise, considering approaches for consultants or team members. They discuss various personality types encountered in such situations, including those overly suspicious or resistant to change. Moreover, they discuss how to convince a boss that a proposed project is a bad idea, suggesting a structured approach with clear estimates, risk assessment, and alternative solutions. They emphasize the importance of honesty, transparency, and presenting options with clear pros and cons.
The discussion then returns to the Gen AI time-series case study, suggesting a presentation of multiple options, including established algorithms and the Gen AI approach, to facilitate a data-driven decision.
Finally, the episode addresses the scenario of a teammate being untrained about a system they built, suggesting a combination of direct but constructive feedback and a collaborative approach to identify the root cause of the issue.
Socials
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
…
continue reading
The discussion then returns to the Gen AI time-series case study, suggesting a presentation of multiple options, including established algorithms and the Gen AI approach, to facilitate a data-driven decision.
Finally, the episode addresses the scenario of a teammate being untrained about a system they built, suggesting a combination of direct but constructive feedback and a collaborative approach to identify the root cause of the issue.
Socials
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
209 episodes
MP3•Episode home
Manage episode 449604392 series 2977446
Content provided by Charles M Wood. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Charles M Wood or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
In today's episode, Ben and Michael discuss how to handle situations involving individuals lacking expertise in machine learning projects. They explore scenarios where a team lacks expertise, considering approaches for consultants or team members. They discuss various personality types encountered in such situations, including those overly suspicious or resistant to change. Moreover, they discuss how to convince a boss that a proposed project is a bad idea, suggesting a structured approach with clear estimates, risk assessment, and alternative solutions. They emphasize the importance of honesty, transparency, and presenting options with clear pros and cons.
The discussion then returns to the Gen AI time-series case study, suggesting a presentation of multiple options, including established algorithms and the Gen AI approach, to facilitate a data-driven decision.
Finally, the episode addresses the scenario of a teammate being untrained about a system they built, suggesting a combination of direct but constructive feedback and a collaborative approach to identify the root cause of the issue.
Socials
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
…
continue reading
The discussion then returns to the Gen AI time-series case study, suggesting a presentation of multiple options, including established algorithms and the Gen AI approach, to facilitate a data-driven decision.
Finally, the episode addresses the scenario of a teammate being untrained about a system they built, suggesting a combination of direct but constructive feedback and a collaborative approach to identify the root cause of the issue.
Socials
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
209 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.