Artwork

Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

BI 201 Rajesh Rao: From Predictive Coding to Brain Co-Processors

1:37:22
 
Share
 

Manage episode 479559027 series 3662073
Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Support the show to get full episodes, full archive, and join the Discord community.

Today I'm in conversation with Rajesh Rao, a distinguished professor of computer science and engineering at the University of Washington, where he also co-directs the Center for Neurotechnology. Back in 1999, Raj and Dana Ballard published what became quite a famous paper, which proposed how predictive coding might be implemented in brains. What is predictive coding, you may be wondering? It's roughly the idea that your brain is constantly predicting incoming sensory signals, and it generates that prediction as a top-down signal that meets the bottom-up sensory signals. Then the brain computes a difference between the prediction and the actual sensory input, and that difference is sent back up to the "top" where the brain then updates its internal model to make better future predictions.

So that was 25 years ago, and it was focused on how the brain handles sensory information. But Raj just recently published an update to the predictive coding framework, one that incorporates actions and perception, suggests how it might be implemented in the cortex - specifically which cortical layers do what - something he calls "Active predictive coding." So we discuss that new proposal, we also talk about his engineering work on brain-computer interface technologies, like BrainNet, which basically connects two brains together, and like neural co-processors, which use an artificial neural network as a prosthetic that can do things like enhance memories, optimize learning, and help restore brain function after strokes, for example. Finally, we discuss Raj's interest and work on deciphering an ancient Indian text, the mysterious Indus script.

Read the transcript.

0:00 - Intro 7:40 - Predictive coding origins 16:14 - Early appreciation of recurrence 17:08 - Prediction as a general theory of the brain 18:38 - Rao and Ballard 1999 26:32 - Prediction as a general theory of the brain 33:24 - Perception vs action 33:28 - Active predictive coding 45:04 - Evolving to augment our brains 53:03 - BrainNet 57:12 - Neural co-processors 1:11:19 - Decoding the Indus Script 1:20:18 - Transformer models relation to active predictive coding

  continue reading

99 episodes

Artwork
iconShare
 
Manage episode 479559027 series 3662073
Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Support the show to get full episodes, full archive, and join the Discord community.

Today I'm in conversation with Rajesh Rao, a distinguished professor of computer science and engineering at the University of Washington, where he also co-directs the Center for Neurotechnology. Back in 1999, Raj and Dana Ballard published what became quite a famous paper, which proposed how predictive coding might be implemented in brains. What is predictive coding, you may be wondering? It's roughly the idea that your brain is constantly predicting incoming sensory signals, and it generates that prediction as a top-down signal that meets the bottom-up sensory signals. Then the brain computes a difference between the prediction and the actual sensory input, and that difference is sent back up to the "top" where the brain then updates its internal model to make better future predictions.

So that was 25 years ago, and it was focused on how the brain handles sensory information. But Raj just recently published an update to the predictive coding framework, one that incorporates actions and perception, suggests how it might be implemented in the cortex - specifically which cortical layers do what - something he calls "Active predictive coding." So we discuss that new proposal, we also talk about his engineering work on brain-computer interface technologies, like BrainNet, which basically connects two brains together, and like neural co-processors, which use an artificial neural network as a prosthetic that can do things like enhance memories, optimize learning, and help restore brain function after strokes, for example. Finally, we discuss Raj's interest and work on deciphering an ancient Indian text, the mysterious Indus script.

Read the transcript.

0:00 - Intro 7:40 - Predictive coding origins 16:14 - Early appreciation of recurrence 17:08 - Prediction as a general theory of the brain 18:38 - Rao and Ballard 1999 26:32 - Prediction as a general theory of the brain 33:24 - Perception vs action 33:28 - Active predictive coding 45:04 - Evolving to augment our brains 53:03 - BrainNet 57:12 - Neural co-processors 1:11:19 - Decoding the Indus Script 1:20:18 - Transformer models relation to active predictive coding

  continue reading

99 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play