Artwork

Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

BI 210 Dean Buonomano: Consciousness, Time, and Organotypic Dynamics

1:50:33
 
Share
 

Manage episode 478537392 series 2422585
Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Support the show to get full episodes, full archive, and join the Discord community.

Dean Buonomano runs the Buonomano lab at UCLA. Dean was a guest on Brain Inspired way back on episode 18, where we talked about his book Your Brain is a Time Machine: The Neuroscience and Physics of Time, which details much of his thought and research about how centrally important time is for virtually everything we do, different conceptions of time in philosophy, and how how brains might tell time. That was almost 7 years ago, and his work on time and dynamics in computational neuroscience continues.

One thing we discuss today, later in the episode, is his recent work using organotypic brain slices to test the idea that cortical circuits implement timing as a computational primitive it's something they do by they're very nature. Organotypic brain slices are between what I think of as traditional brain slices and full on organoids. Brain slices are extracted from an organism, and maintained in a brain-like fluid while you perform experiments on them. Organoids start with a small amount of cells that you the culture, and let them divide and grow and specialize, until you have a mass of cells that have grown into an organ of some sort, to then perform experiments on. Organotypic brain slices are extracted from an organism, like brain slices, but then also cultured for some time to let them settle back into some sort of near-homeostatic point - to them as close as you can to what they're like in the intact brain... then perform experiments on them. Dean and his colleagues use optigenetics to train their brain slices to predict the timing of the stimuli, and they find the populations of neurons do indeed learn to predict the timing of the stimuli, and that they exhibit replaying of those sequences similar to the replay seen in brain areas like the hippocampus.

But, we begin our conversation talking about Dean's recent piece in The Transmitter, that I'll point to in the show notes, called The brain holds no exclusive rights on how to create intelligence. There he argues that modern AI is likely to continue its recent successes despite the ongoing divergence between AI and neuroscience. This is in contrast to what folks in NeuroAI believe.

We then talk about his recent chapter with physicist Carlo Rovelli, titled Bridging the neuroscience and physics of time, in which Dean and Carlo examine where neuroscience and physics disagree and where they agree about the nature of time.

Finally, we discuss Dean's thoughts on the integrated information theory of consciousness, or IIT. IIT has see a little controversy lately. Over 100 scientists, a large part of that group calling themselves IIT-Concerned, have expressed concern that IIT is actually unscientific. This has cause backlash and anti-backlash, and all sorts of fun expression from many interested people. Dean explains his own views about why he thinks IIT is not in the purview of science - namely that it doesn't play well with the existing ontology of what physics says about science. What I just said doesn't do justice to his arguments, which he articulates much better.

Read the transcript.

0:00 - Intro 8:49 - AI doesn't need biology 17:52 - Time in physics and in neuroscience 34:04 - Integrated information theory 1:01:34 - Global neuronal workspace theory 1:07:46 - Organotypic slices and predictive processing 1:26:07 - Do brains actually measure time? David Robbe

  continue reading

224 episodes

Artwork
iconShare
 
Manage episode 478537392 series 2422585
Content provided by Paul Middlebrooks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Paul Middlebrooks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Support the show to get full episodes, full archive, and join the Discord community.

Dean Buonomano runs the Buonomano lab at UCLA. Dean was a guest on Brain Inspired way back on episode 18, where we talked about his book Your Brain is a Time Machine: The Neuroscience and Physics of Time, which details much of his thought and research about how centrally important time is for virtually everything we do, different conceptions of time in philosophy, and how how brains might tell time. That was almost 7 years ago, and his work on time and dynamics in computational neuroscience continues.

One thing we discuss today, later in the episode, is his recent work using organotypic brain slices to test the idea that cortical circuits implement timing as a computational primitive it's something they do by they're very nature. Organotypic brain slices are between what I think of as traditional brain slices and full on organoids. Brain slices are extracted from an organism, and maintained in a brain-like fluid while you perform experiments on them. Organoids start with a small amount of cells that you the culture, and let them divide and grow and specialize, until you have a mass of cells that have grown into an organ of some sort, to then perform experiments on. Organotypic brain slices are extracted from an organism, like brain slices, but then also cultured for some time to let them settle back into some sort of near-homeostatic point - to them as close as you can to what they're like in the intact brain... then perform experiments on them. Dean and his colleagues use optigenetics to train their brain slices to predict the timing of the stimuli, and they find the populations of neurons do indeed learn to predict the timing of the stimuli, and that they exhibit replaying of those sequences similar to the replay seen in brain areas like the hippocampus.

But, we begin our conversation talking about Dean's recent piece in The Transmitter, that I'll point to in the show notes, called The brain holds no exclusive rights on how to create intelligence. There he argues that modern AI is likely to continue its recent successes despite the ongoing divergence between AI and neuroscience. This is in contrast to what folks in NeuroAI believe.

We then talk about his recent chapter with physicist Carlo Rovelli, titled Bridging the neuroscience and physics of time, in which Dean and Carlo examine where neuroscience and physics disagree and where they agree about the nature of time.

Finally, we discuss Dean's thoughts on the integrated information theory of consciousness, or IIT. IIT has see a little controversy lately. Over 100 scientists, a large part of that group calling themselves IIT-Concerned, have expressed concern that IIT is actually unscientific. This has cause backlash and anti-backlash, and all sorts of fun expression from many interested people. Dean explains his own views about why he thinks IIT is not in the purview of science - namely that it doesn't play well with the existing ontology of what physics says about science. What I just said doesn't do justice to his arguments, which he articulates much better.

Read the transcript.

0:00 - Intro 8:49 - AI doesn't need biology 17:52 - Time in physics and in neuroscience 34:04 - Integrated information theory 1:01:34 - Global neuronal workspace theory 1:07:46 - Organotypic slices and predictive processing 1:26:07 - Do brains actually measure time? David Robbe

  continue reading

224 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play