Artwork

Content provided by Breaking Math, Gabriel Hesch, and Autumn Phaneuf. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Breaking Math, Gabriel Hesch, and Autumn Phaneuf or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Molecular dynamics simulation with GFlowNets: machine learning the importance of energy estimators in computational chemistry and drug discovery

28:23
 
Share
 

Manage episode 442931043 series 1358022
Content provided by Breaking Math, Gabriel Hesch, and Autumn Phaneuf. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Breaking Math, Gabriel Hesch, and Autumn Phaneuf or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this episode of Breaking Math, hosts Autumn and Gabriel take a deep dive into the paper “Towards Equilibrium Molecular Conformation Generation with GFlowNets” by Volokova et al., published in the Digital Discovery Journal by the Royal Society of Chemistry. They explore the cutting-edge intersection of molecular conformations and machine learning, comparing traditional methods like molecular dynamics and cheminformatics with the innovative approach of Generative Flow Networks (GFlowNets) for molecular conformation generation.

The episode covers empirical results that showcase the effectiveness of GFlowNets in computational chemistry, their scalability, and the role of energy estimators in advancing fields like drug discovery. Tune in to learn how machine learning is transforming the way we understand molecular structures and driving breakthroughs in chemistry and pharmaceuticals.

Keywords: molecular conformations, machine learning, GFlowNets, computational chemistry, drug discovery, molecular dynamics, cheminformatics, energy estimators, empirical results, scalability, math, mathematics, physics, AI

Become a patron of Breaking Math for as little as a buck a month
You can find the paper “Towards equilibrium molecular conformation generation with GFlowNets” by Volokova et al in Digital Discovery Journal by the Royal Society of Chemistry.

Follow Breaking Math on Twitter, Instagram, LinkedIn, Website, YouTube, TikTok

Follow Autumn on Twitter and Instagram

Follow Gabe on Twitter.

Become a guest here

email: [email protected]

  continue reading

166 episodes

Artwork
iconShare
 
Manage episode 442931043 series 1358022
Content provided by Breaking Math, Gabriel Hesch, and Autumn Phaneuf. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Breaking Math, Gabriel Hesch, and Autumn Phaneuf or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this episode of Breaking Math, hosts Autumn and Gabriel take a deep dive into the paper “Towards Equilibrium Molecular Conformation Generation with GFlowNets” by Volokova et al., published in the Digital Discovery Journal by the Royal Society of Chemistry. They explore the cutting-edge intersection of molecular conformations and machine learning, comparing traditional methods like molecular dynamics and cheminformatics with the innovative approach of Generative Flow Networks (GFlowNets) for molecular conformation generation.

The episode covers empirical results that showcase the effectiveness of GFlowNets in computational chemistry, their scalability, and the role of energy estimators in advancing fields like drug discovery. Tune in to learn how machine learning is transforming the way we understand molecular structures and driving breakthroughs in chemistry and pharmaceuticals.

Keywords: molecular conformations, machine learning, GFlowNets, computational chemistry, drug discovery, molecular dynamics, cheminformatics, energy estimators, empirical results, scalability, math, mathematics, physics, AI

Become a patron of Breaking Math for as little as a buck a month
You can find the paper “Towards equilibrium molecular conformation generation with GFlowNets” by Volokova et al in Digital Discovery Journal by the Royal Society of Chemistry.

Follow Breaking Math on Twitter, Instagram, LinkedIn, Website, YouTube, TikTok

Follow Autumn on Twitter and Instagram

Follow Gabe on Twitter.

Become a guest here

email: [email protected]

  continue reading

166 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play