Artwork

Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Criminal Networks

43:35
 
Share
 

Manage episode 471855005 series 49487
Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this episode we talk with Justin Wang Ngai Yeung, a PhD candidate at the Network Science Institute at Northeastern University in London, who explores how network science helps uncover criminal networks.

Justin is also a member of the organizing committee of the satellite conference dealing with criminal networks at the network science conference in The Netherlands in June 2025.

Listeners will learn how graph-based models assist law enforcement in analyzing missing data, identifying key figures in criminal organizations, and improving intervention strategies.

Key insights include the challenges of incomplete and inaccurate data in criminal network analysis, how law enforcement agencies use network dismantling techniques to disrupt organized crime, and the role of machine learning in predicting hidden connections within illicit networks.

-------------------------------

Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

  continue reading

576 episodes

Artwork

Criminal Networks

Data Skeptic

5,543 subscribers

published

iconShare
 
Manage episode 471855005 series 49487
Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this episode we talk with Justin Wang Ngai Yeung, a PhD candidate at the Network Science Institute at Northeastern University in London, who explores how network science helps uncover criminal networks.

Justin is also a member of the organizing committee of the satellite conference dealing with criminal networks at the network science conference in The Netherlands in June 2025.

Listeners will learn how graph-based models assist law enforcement in analyzing missing data, identifying key figures in criminal organizations, and improving intervention strategies.

Key insights include the challenges of incomplete and inaccurate data in criminal network analysis, how law enforcement agencies use network dismantling techniques to disrupt organized crime, and the role of machine learning in predicting hidden connections within illicit networks.

-------------------------------

Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

  continue reading

576 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play