Artwork

Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Graphs for Causal AI

41:00
 
Share
 

Manage episode 484592399 series 49487
Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

How to build artificial intelligence systems that understand cause and effect, moving beyond simple correlations?

As we all know, correlation is not causation. "Spurious correlations" can show, for example, how rising ice cream sales might statistically link to more drownings, not because one causes the other, but due to an unobserved common cause like warm weather.

Our guest, Utkarshani Jaimini, a researcher from the University of South Carolina's Artificial Intelligence Institute, tries to tackle this problem by using knowledge graphs that incorporate domain expertise.

Knowledge graphs (structured representations of information) are combined with neural networks in the field of neurosymbolic AI to represent and reason about complex relationships. This involves creating causal ontologies, incorporating the "weight" or strength of causal relationships and hyperrelations. This field has many practical applications such as for AI explainability, healthcare and autonomous driving.

Follow our guest

Utkarshani Jaimini's Webpage

Linkedin

Papers in focus

CausalLP: Learning causal relations with weighted knowledge graph link prediction, 2024

HyperCausalLP: Causal Link Prediction using Hyper-Relational Knowledge Graph, 2024

  continue reading

580 episodes

Artwork

Graphs for Causal AI

Data Skeptic

5,547 subscribers

published

iconShare
 
Manage episode 484592399 series 49487
Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

How to build artificial intelligence systems that understand cause and effect, moving beyond simple correlations?

As we all know, correlation is not causation. "Spurious correlations" can show, for example, how rising ice cream sales might statistically link to more drownings, not because one causes the other, but due to an unobserved common cause like warm weather.

Our guest, Utkarshani Jaimini, a researcher from the University of South Carolina's Artificial Intelligence Institute, tries to tackle this problem by using knowledge graphs that incorporate domain expertise.

Knowledge graphs (structured representations of information) are combined with neural networks in the field of neurosymbolic AI to represent and reason about complex relationships. This involves creating causal ontologies, incorporating the "weight" or strength of causal relationships and hyperrelations. This field has many practical applications such as for AI explainability, healthcare and autonomous driving.

Follow our guest

Utkarshani Jaimini's Webpage

Linkedin

Papers in focus

CausalLP: Learning causal relations with weighted knowledge graph link prediction, 2024

HyperCausalLP: Causal Link Prediction using Hyper-Relational Knowledge Graph, 2024

  continue reading

580 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play