Content provided by Arize AI. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Arize AI or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!
icon Daily Deals

DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines

33:57
 
Share
 

Manage episode 430441178 series 3448051
Content provided by Arize AI. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Arize AI or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Chaining language model (LM) calls as composable modules is fueling a new way of programming, but ensuring LMs adhere to important constraints requires heuristic “prompt engineering.”
The paper this week introduces LM Assertions, a programming construct for expressing computational constraints that LMs should satisfy. The researchers integrated their constructs into the recent DSPy programming model for LMs and present new strategies that allow DSPy to compile programs with LM Assertions into more reliable and accurate systems. They also propose strategies to use assertions at inference time for automatic self-refinement with LMs. They reported on four diverse case studies for text generation and found that LM Assertions improve not only compliance with imposed rules but also downstream task performance, passing constraints up to 164% more often and generating up to 37% more higher-quality responses.
We discuss this paper with Cyrus Nouroozi, DSPY key contributor.
Read it on the blog: https://arize.com/blog/dspy-assertions-computational-constraints/

Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

48 episodes

iconShare
 
Manage episode 430441178 series 3448051
Content provided by Arize AI. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Arize AI or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Chaining language model (LM) calls as composable modules is fueling a new way of programming, but ensuring LMs adhere to important constraints requires heuristic “prompt engineering.”
The paper this week introduces LM Assertions, a programming construct for expressing computational constraints that LMs should satisfy. The researchers integrated their constructs into the recent DSPy programming model for LMs and present new strategies that allow DSPy to compile programs with LM Assertions into more reliable and accurate systems. They also propose strategies to use assertions at inference time for automatic self-refinement with LMs. They reported on four diverse case studies for text generation and found that LM Assertions improve not only compliance with imposed rules but also downstream task performance, passing constraints up to 164% more often and generating up to 37% more higher-quality responses.
We discuss this paper with Cyrus Nouroozi, DSPY key contributor.
Read it on the blog: https://arize.com/blog/dspy-assertions-computational-constraints/

Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

48 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

Quick Reference Guide

Listen to this show while you explore
Play