Artwork

Content provided by Intel Corporation. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Intel Corporation or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Biological Intelligence and the Limitations of Deep Neural Networks – Intel on AI Season 3, Episode 2

37:45
 
Share
 

Manage episode 321488102 series 3321523
Content provided by Intel Corporation. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Intel Corporation or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this episode of Intel on AI host Amir Khosrowshahi and Melanie Mitchell talk about the paradox of studying human intelligence and the limitations of deep neural networks. Melanie is the Davis Professor of Complexity at the Santa Fe Institute, former professor of Computer Science at Portland State University, and the author/editor of six books and numerous scholarly papers in the fields of artificial intelligence, cognitive science, and complex systems, including Complexity: A Guided Tour and Artificial Intelligence: A Guide for Thinking Humans.

In the episode, Melanie and Amir discuss how intelligence emerges from the substrate of neurons and why being able to perceive abstract similarities between different situations via analogies is at the core of cognition. Melanie goes into detail about deep neural networks using spurious statistical correlations, the distinction between generative and discriminative systems and machine learning, and the theory that a fundamental part of the human brain is trying to predict what is going to happen next based on prior experience. She also talks about creating the Copycat software, the dangers of artificial intelligence (AI) being easy to manipulate even in very narrow areas, and the importance of getting inspiration from biological intelligence.

Academic research discussed in the podcast episode:

  continue reading

122 episodes

Artwork
iconShare
 
Manage episode 321488102 series 3321523
Content provided by Intel Corporation. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Intel Corporation or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this episode of Intel on AI host Amir Khosrowshahi and Melanie Mitchell talk about the paradox of studying human intelligence and the limitations of deep neural networks. Melanie is the Davis Professor of Complexity at the Santa Fe Institute, former professor of Computer Science at Portland State University, and the author/editor of six books and numerous scholarly papers in the fields of artificial intelligence, cognitive science, and complex systems, including Complexity: A Guided Tour and Artificial Intelligence: A Guide for Thinking Humans.

In the episode, Melanie and Amir discuss how intelligence emerges from the substrate of neurons and why being able to perceive abstract similarities between different situations via analogies is at the core of cognition. Melanie goes into detail about deep neural networks using spurious statistical correlations, the distinction between generative and discriminative systems and machine learning, and the theory that a fundamental part of the human brain is trying to predict what is going to happen next based on prior experience. She also talks about creating the Copycat software, the dangers of artificial intelligence (AI) being easy to manipulate even in very narrow areas, and the importance of getting inspiration from biological intelligence.

Academic research discussed in the podcast episode:

  continue reading

122 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play