Artwork

Content provided by Intel Corporation. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Intel Corporation or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Gramener Image Recognition and Intel AI Saving Antarctic Penguins – Intel on AI – Episode 35

11:18
 
Share
 

Manage episode 321488153 series 3321523
Content provided by Intel Corporation. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Intel Corporation or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this Intel on AI podcast episode: Counting and identifying characteristics of crowds can provide organizations with a lot of valuable insights. Yet challenges like image distortion, density, and different camera angles can make analyzing images accurately very challenging. Ganes Kesari, Co-founder and Head of Analytics at Gramener, joins the Intel on AI podcast to discuss how Gramener has created a crowd counting solution that can overcome those challenges and produce a very rapid and accurate analysis of images. He talks about how Gramener has utilized this solution for several AI for good projects including a joint effort with Microsoft to count Antarctic penguin colonies. Ganes explains how their solution used convolutional neural networks (CNNs) using density-based estimations to deliver a more accurate penguin count than traditional manual counting methods. He also emphasized how benchmarking the solution on Intel AI technology and the Intel Optimization for PyTorch helped Gramener achieve comparable performance at a potentially lower computational cost. In addition to AI for good projects, Ganes also outlines how this same solution can also be utilized for other enterprise opportunities like drug discovery and how Gramener will continue to collaborate with Intel to provide better optimizations and performance for its customers.

To learn more, visit: gramener.com

Visit Intel AI Builders at: builders.intel.com/ai

  continue reading

122 episodes

Artwork
iconShare
 
Manage episode 321488153 series 3321523
Content provided by Intel Corporation. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Intel Corporation or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this Intel on AI podcast episode: Counting and identifying characteristics of crowds can provide organizations with a lot of valuable insights. Yet challenges like image distortion, density, and different camera angles can make analyzing images accurately very challenging. Ganes Kesari, Co-founder and Head of Analytics at Gramener, joins the Intel on AI podcast to discuss how Gramener has created a crowd counting solution that can overcome those challenges and produce a very rapid and accurate analysis of images. He talks about how Gramener has utilized this solution for several AI for good projects including a joint effort with Microsoft to count Antarctic penguin colonies. Ganes explains how their solution used convolutional neural networks (CNNs) using density-based estimations to deliver a more accurate penguin count than traditional manual counting methods. He also emphasized how benchmarking the solution on Intel AI technology and the Intel Optimization for PyTorch helped Gramener achieve comparable performance at a potentially lower computational cost. In addition to AI for good projects, Ganes also outlines how this same solution can also be utilized for other enterprise opportunities like drug discovery and how Gramener will continue to collaborate with Intel to provide better optimizations and performance for its customers.

To learn more, visit: gramener.com

Visit Intel AI Builders at: builders.intel.com/ai

  continue reading

122 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play