Artwork

Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Build a Culture of ML Testing and Model Quality // Mohamed Elgendy // MLOps Coffee Sessions #76

51:13
 
Share
 

Manage episode 318539374 series 3241972
Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

MLOps Coffee Sessions #76 with Mohamed Elgendy, Build a Culture of ML Testing and Model Quality.
// Abstract
Machine learning engineers and data scientists spend most of their time testing and validating their models’ performance. But as machine learning products become more integral to our daily lives, the importance of rigorously testing model behavior will only increase.
Current ML evaluation techniques are falling short in their attempts to describe the full picture of model performance. Evaluating ML models by only using global metrics (like accuracy or F1 score) produces a low-resolution picture of a model’s performance and fails to describe the model performance across types of cases, attributes, scenarios.
It is rapidly becoming vital for ML teams to have a full understanding of when and how their models fail and to track these cases across different model versions to be able to identify regression. We’ve seen great results from teams implementing unit and functional testing techniques in their model testing. In this talk, we’ll cover why systematic unit testing is important and how to effectively test ML system behavior.
// Bio
Mohamed is the Co-founder & CEO of Kolena and the author of the book “Deep Learning for Vision Systems”. Previously, he built and managed AI/ML organizations at Amazon, Twilio, Rakuten, and Synapse. Mohamed regularly speaks at AI conferences like Amazon's DevCon, O'Reilly's AI conference, and Google's I/O.
--------------- ✌️Connect With Us ✌️ -------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, blogs, newsletter and more: https://mlops.community/
Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Adam on LinkedIn: https://www.linkedin.com/in/aesroka/
Connect with Mohamed on LinkedIn: https://www.linkedin.com/in/moelgendy/

  continue reading

451 episodes

Artwork
iconShare
 
Manage episode 318539374 series 3241972
Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

MLOps Coffee Sessions #76 with Mohamed Elgendy, Build a Culture of ML Testing and Model Quality.
// Abstract
Machine learning engineers and data scientists spend most of their time testing and validating their models’ performance. But as machine learning products become more integral to our daily lives, the importance of rigorously testing model behavior will only increase.
Current ML evaluation techniques are falling short in their attempts to describe the full picture of model performance. Evaluating ML models by only using global metrics (like accuracy or F1 score) produces a low-resolution picture of a model’s performance and fails to describe the model performance across types of cases, attributes, scenarios.
It is rapidly becoming vital for ML teams to have a full understanding of when and how their models fail and to track these cases across different model versions to be able to identify regression. We’ve seen great results from teams implementing unit and functional testing techniques in their model testing. In this talk, we’ll cover why systematic unit testing is important and how to effectively test ML system behavior.
// Bio
Mohamed is the Co-founder & CEO of Kolena and the author of the book “Deep Learning for Vision Systems”. Previously, he built and managed AI/ML organizations at Amazon, Twilio, Rakuten, and Synapse. Mohamed regularly speaks at AI conferences like Amazon's DevCon, O'Reilly's AI conference, and Google's I/O.
--------------- ✌️Connect With Us ✌️ -------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, blogs, newsletter and more: https://mlops.community/
Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Adam on LinkedIn: https://www.linkedin.com/in/aesroka/
Connect with Mohamed on LinkedIn: https://www.linkedin.com/in/moelgendy/

  continue reading

451 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play