Artwork

Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Exploring the Impact of Agentic Workflows // Raj Rikhy // #268

51:02
 
Share
 

Manage episode 445301738 series 3241972
Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Raj Rikhy is a Senior Product Manager at Microsoft AI + R, enabling deep reinforcement learning use cases for autonomous systems. Previously, Raj was the Group Technical Product Manager in the CDO for Data Science and Deep Learning at IBM. Prior to joining IBM, Raj has been working in product management for several years - at Bitnami, Appdirect and Salesforce. // MLOps Podcast #268 with Raj Rikhy, Principal Product Manager at Microsoft. // Abstract In this MLOps Community podcast, Demetrios chats with Raj Rikhy, Principal Product Manager at Microsoft, about deploying AI agents in production. They discuss starting with simple tools, setting clear success criteria, and deploying agents in controlled environments for better scaling. Raj highlights real-time uses like fraud detection and optimizing inference costs with LLMs, while stressing human oversight during early deployment to manage LLM randomness. The episode offers practical advice on deploying AI agents thoughtfully and efficiently, avoiding over-engineering, and integrating AI into everyday applications. // Bio Raj is a Senior Product Manager at Microsoft AI + R, enabling deep reinforcement learning use cases for autonomous systems. Previously, Raj was the Group Technical Product Manager in the CDO for Data Science and Deep Learning at IBM. Prior to joining IBM, Raj has been working in product management for several years - at Bitnami, Appdirect and Salesforce. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://www.microsoft.com/en-us/research/focus-area/ai-and-microsoft-research/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Raj on LinkedIn: https://www.linkedin.com/in/rajrikhy/

  continue reading

440 episodes

Artwork
iconShare
 
Manage episode 445301738 series 3241972
Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Raj Rikhy is a Senior Product Manager at Microsoft AI + R, enabling deep reinforcement learning use cases for autonomous systems. Previously, Raj was the Group Technical Product Manager in the CDO for Data Science and Deep Learning at IBM. Prior to joining IBM, Raj has been working in product management for several years - at Bitnami, Appdirect and Salesforce. // MLOps Podcast #268 with Raj Rikhy, Principal Product Manager at Microsoft. // Abstract In this MLOps Community podcast, Demetrios chats with Raj Rikhy, Principal Product Manager at Microsoft, about deploying AI agents in production. They discuss starting with simple tools, setting clear success criteria, and deploying agents in controlled environments for better scaling. Raj highlights real-time uses like fraud detection and optimizing inference costs with LLMs, while stressing human oversight during early deployment to manage LLM randomness. The episode offers practical advice on deploying AI agents thoughtfully and efficiently, avoiding over-engineering, and integrating AI into everyday applications. // Bio Raj is a Senior Product Manager at Microsoft AI + R, enabling deep reinforcement learning use cases for autonomous systems. Previously, Raj was the Group Technical Product Manager in the CDO for Data Science and Deep Learning at IBM. Prior to joining IBM, Raj has been working in product management for several years - at Bitnami, Appdirect and Salesforce. // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://www.microsoft.com/en-us/research/focus-area/ai-and-microsoft-research/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Raj on LinkedIn: https://www.linkedin.com/in/rajrikhy/

  continue reading

440 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play