Artwork

Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

MLOps Coffee Sessions #12: Journey of Flyte at Lyft and Through Open-source // Ketan Umare

1:05:05
 
Share
 

Manage episode 313294510 series 3241972
Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Why was Flyte built at Lyft?

What sorts of requirements does a ML infrastructure team have at lyft?

What problems does it solve / use cases?

Where does it fit in in the ML and Data ecosystem?

What is the vision?

Who should consider using it?

Learnings as the engineering team tried to bootstrap an open-source community.

Ketan Umare is a senior staff software engineer at Lyft responsible for technical direction of the Machine Learning Platform and is a founder of the Flyte project. Before Flyte he worked on ETA, routing and mapping infrastructure at Lyft. He is also the founder of Flink Kubernetes operator and contributor to Spark on kubernetes. Prior to Lyft he was a founding member of Oracle Baremetal Cloud and lead teams building Elastic Block Storage. Prior to that, he started and lead multiple teams in Mapping and Transportation optimization infrastructure at Amazon. He received his Masters in Computer Science from Georgia Tech specializing in High-performance computing and his Bachelors in Engineering in Computer Science from VJTI Mumbai.

Besides work, he enjoys spending time with his daughter and wife. He loves the Pacific Northwest outdoors and will try anything new.

Lyft

Pricing, Locations, Estimated Time of Arrivals (ETA), Mapping, Self-Driving (L5), etc.

What sort of scale, storage, network bandwidth are we looking at?

Tens of thousands of workflows, hundreds of thousands of executions, millions of tasks, and tens of millions of containers!

Flyte: more than 900k workflow executed a month and more than 30+ million container executions per month

Typical flow of information?

What are the user stories you’re typically dealing with at lyft?

How do you set it up?

On-prem, cloud, etc.

Helm installable?

Why Golang?

What problems does it solve?

Complex data dependencies? Why

Orchestrated compute on demand

Reuse and sharing

Key features

Multi-tenant, hosted, serverless

Parametrized, data lineage, caching

Additionally, if the run invokes a task that has already been computed before, regardless of who executed it, Flyte will smartly use the cached output, saving you both time and money.

Versioning, sharing

Modular, loosely coupled

Seems like you guys recognize that the best task for the job might be hosted elsewhere, so it was important to integrate other solutions into flyte.

Flyte extensions

Backend plugins - is it true you can create and manage k8s resources like CRDs for things like spark, sagemaker, bigquery?

Drop a Star

https://flyte.org

Flyte community

----------- Connect With Us ✌️-------------

Join our slack community: https://go.mlops.community/slack

Follow us on Twitter: @mlopscommunity

Sign up for the next meetup: https://go.mlops.community/register

Connect with Ketan on LinkedIn: https://www.linkedin.com/in/ketanumare/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/

Connect with David on LinkedIn: https://www.linkedin.com/in/aponteanalytics/

  continue reading

440 episodes

Artwork
iconShare
 
Manage episode 313294510 series 3241972
Content provided by Demetrios. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Demetrios or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Why was Flyte built at Lyft?

What sorts of requirements does a ML infrastructure team have at lyft?

What problems does it solve / use cases?

Where does it fit in in the ML and Data ecosystem?

What is the vision?

Who should consider using it?

Learnings as the engineering team tried to bootstrap an open-source community.

Ketan Umare is a senior staff software engineer at Lyft responsible for technical direction of the Machine Learning Platform and is a founder of the Flyte project. Before Flyte he worked on ETA, routing and mapping infrastructure at Lyft. He is also the founder of Flink Kubernetes operator and contributor to Spark on kubernetes. Prior to Lyft he was a founding member of Oracle Baremetal Cloud and lead teams building Elastic Block Storage. Prior to that, he started and lead multiple teams in Mapping and Transportation optimization infrastructure at Amazon. He received his Masters in Computer Science from Georgia Tech specializing in High-performance computing and his Bachelors in Engineering in Computer Science from VJTI Mumbai.

Besides work, he enjoys spending time with his daughter and wife. He loves the Pacific Northwest outdoors and will try anything new.

Lyft

Pricing, Locations, Estimated Time of Arrivals (ETA), Mapping, Self-Driving (L5), etc.

What sort of scale, storage, network bandwidth are we looking at?

Tens of thousands of workflows, hundreds of thousands of executions, millions of tasks, and tens of millions of containers!

Flyte: more than 900k workflow executed a month and more than 30+ million container executions per month

Typical flow of information?

What are the user stories you’re typically dealing with at lyft?

How do you set it up?

On-prem, cloud, etc.

Helm installable?

Why Golang?

What problems does it solve?

Complex data dependencies? Why

Orchestrated compute on demand

Reuse and sharing

Key features

Multi-tenant, hosted, serverless

Parametrized, data lineage, caching

Additionally, if the run invokes a task that has already been computed before, regardless of who executed it, Flyte will smartly use the cached output, saving you both time and money.

Versioning, sharing

Modular, loosely coupled

Seems like you guys recognize that the best task for the job might be hosted elsewhere, so it was important to integrate other solutions into flyte.

Flyte extensions

Backend plugins - is it true you can create and manage k8s resources like CRDs for things like spark, sagemaker, bigquery?

Drop a Star

https://flyte.org

Flyte community

----------- Connect With Us ✌️-------------

Join our slack community: https://go.mlops.community/slack

Follow us on Twitter: @mlopscommunity

Sign up for the next meetup: https://go.mlops.community/register

Connect with Ketan on LinkedIn: https://www.linkedin.com/in/ketanumare/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/

Connect with David on LinkedIn: https://www.linkedin.com/in/aponteanalytics/

  continue reading

440 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play