The Importance of Transparency and User Control in Machine Learning
MP3•Episode home
Manage episode 203126681 series 1427720
Content provided by O'Reilly Radar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by O'Reilly Radar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
In this episode of the Data Show, I spoke with Guillaume Chaslot, an ex-YouTube engineer and founder of AlgoTransparency, an organization dedicated to helping the public understand the profound impact algorithms have on our lives. We live in an age when many of our interactions with companies and services are governed by algorithms. At a time when their impact continues to grow, there are many settings where these algorithms are far from transparent. There is growing awareness about the vast amounts of data companies are collecting on their users and customers, and people are starting to demand control over their data. A similar conversation is starting to happen about algorithms—users are wanting more control over what these models optimize for and an understanding of how they work. I first came across Chaslot through a series of articles about the power and impact of YouTube on politics and society. Many of the articles I read relied on data and analysis supplied by Chaslot. We talked about his work trying to decipher how YouTube’s recommendation system works, filter bubbles, transparency in machine learning, and data privacy.
…
continue reading
443 episodes