Artwork

Content provided by Razib Khan. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Razib Khan or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Tade Souaiaia: the edge of statistical genetics, race and sports

1:10:34
 
Share
 

Manage episode 467658210 series 2830656
Content provided by Razib Khan. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Razib Khan or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

On this episode of Unsupervised Learning Razib talks to Tade Souaiaia, a statistical geneticist at SUNY Downstate about his new preprint, Striking Departures from Polygenic Architecture in the Tails of Complex Traits. Souaiaia trained as a computational biologist at USC, but also has a background as a division I track and field athlete.

Razib and Souaiaia discuss what “genetic architecture” means, and consider what we're finding when we look at extreme trait values in characteristics along a normal distribution. Though traits like height or risk for type II diabetes can be thought of as represented by an idealized Gaussian distribution, real molecular and cellular processes still underlie their phenotypic expression. Souaiaia talks about how genomics has resulted in an influx of data and allowed statistical geneticists with a theoretical bent to actually test some of the models that underpin our understanding of traits and examine how models like mutation-selection balance might differ from what we’ve long expected. After wading through the depths of genetic abstraction and how it intersects with the new age of big data, Razib and Souaiaia talk about race and sports, and whether there might be differences between groups in athletic ability. Souaiaia argues that the underlying historical track record is too variable to draw firm conclusions, while Razib argues that there are theoretical reasons that one should expect differences between groups at the tails and even around the memes.

  continue reading

254 episodes

Artwork
iconShare
 
Manage episode 467658210 series 2830656
Content provided by Razib Khan. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Razib Khan or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

On this episode of Unsupervised Learning Razib talks to Tade Souaiaia, a statistical geneticist at SUNY Downstate about his new preprint, Striking Departures from Polygenic Architecture in the Tails of Complex Traits. Souaiaia trained as a computational biologist at USC, but also has a background as a division I track and field athlete.

Razib and Souaiaia discuss what “genetic architecture” means, and consider what we're finding when we look at extreme trait values in characteristics along a normal distribution. Though traits like height or risk for type II diabetes can be thought of as represented by an idealized Gaussian distribution, real molecular and cellular processes still underlie their phenotypic expression. Souaiaia talks about how genomics has resulted in an influx of data and allowed statistical geneticists with a theoretical bent to actually test some of the models that underpin our understanding of traits and examine how models like mutation-selection balance might differ from what we’ve long expected. After wading through the depths of genetic abstraction and how it intersects with the new age of big data, Razib and Souaiaia talk about race and sports, and whether there might be differences between groups in athletic ability. Souaiaia argues that the underlying historical track record is too variable to draw firm conclusions, while Razib argues that there are theoretical reasons that one should expect differences between groups at the tails and even around the memes.

  continue reading

254 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play