On The Bike Shed, hosts Joël Quenneville and Stephanie Minn discuss development experiences and challenges at thoughtbot with Ruby, Rails, JavaScript, and whatever else is drawing their attention, admiration, or ire this week.
…
continue reading
Content provided by Adam Bien. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Adam Bien or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!
Go offline with the Player FM app!
Why JVector 3 Is The Most Advanced Embedded Vector Search Engine
MP3•Episode home
Manage episode 444962536 series 2469611
Content provided by Adam Bien. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Adam Bien or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
An airhacks.fm conversation with Jonathan Ellis (@spyced) about:
…
continue reading
discussion of JVector 3 features and improvements, compression techniques for vector indexes, binary quantization vs product quantization, anisotropic product quantization for improved accuracy, indexing Wikipedia example, Cassandra integration, SIMD acceleration with Fused ADC, optimization with Chronicle Map, E5 embedding models, comparison of CPU vs GPU for vector search, implementation details and low-level optimizations in Java, use of Java Panama API and foreign function interface, JVector's performance advantages, memory footprint reduction, integration with Cassandra and Astra DB, challenges of vector search at scale, trade-offs between RAM usage and CPU performance, Eventual Consistency in distributed vector search, comparison of different embedding models and their accuracy, importance of re-ranking in vector search, advantages of JVector over other vector search implementations
Jonathan Ellis on twitter: @spyced
344 episodes
MP3•Episode home
Manage episode 444962536 series 2469611
Content provided by Adam Bien. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Adam Bien or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
An airhacks.fm conversation with Jonathan Ellis (@spyced) about:
…
continue reading
discussion of JVector 3 features and improvements, compression techniques for vector indexes, binary quantization vs product quantization, anisotropic product quantization for improved accuracy, indexing Wikipedia example, Cassandra integration, SIMD acceleration with Fused ADC, optimization with Chronicle Map, E5 embedding models, comparison of CPU vs GPU for vector search, implementation details and low-level optimizations in Java, use of Java Panama API and foreign function interface, JVector's performance advantages, memory footprint reduction, integration with Cassandra and Astra DB, challenges of vector search at scale, trade-offs between RAM usage and CPU performance, Eventual Consistency in distributed vector search, comparison of different embedding models and their accuracy, importance of re-ranking in vector search, advantages of JVector over other vector search implementations
Jonathan Ellis on twitter: @spyced
344 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.