Artwork

Content provided by Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

The Path to Responsible AI with Julia Stoyanovich of NYU

48:09
 
Share
 

Manage episode 398318406 series 2954151
Content provided by Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this enlightening episode, Dr. Julia Stoyanovich delves into the world of responsible AI, exploring the ethical, societal, and technological implications of AI systems. She underscores the importance of global regulations, human-centric decision-making, and the proactive management of biases and risks associated with AI deployment. Through her expert lens, Dr. Stoyanovich advocates for a future where AI is not only innovative but also equitable, transparent, and aligned with human values.

Julia is an Institute Associate Professor at NYU in both the Tandon School of Engineering, and the Center for Data Science. In addition she is Director of the Center for Responsible AI also at NYU. Her research focuses on responsible data management, fairness, diversity, transparency, and data protection in all stages of the data science lifecycle.

Episode Summary -

  1. The Definition of Responsible AI
  2. Example of ethical AI in the medical world - Fast MRI technology
  3. Fairness and Diversity in AI
  4. The role of regulation - What it can and can’t do
  5. Transparency, Bias in AI models and Data Protection
  6. The dangers of Gen AI Hype and problematic AI narratives from the tech industry
  7. The impotence of humans in ensuring ethical development
  8. Why “Responsible AI” is actually a bit of a misleading term
  9. What Data & AI leaders can do to practise Responsible AI

  continue reading

29 episodes

Artwork
iconShare
 
Manage episode 398318406 series 2954151
Content provided by Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

In this enlightening episode, Dr. Julia Stoyanovich delves into the world of responsible AI, exploring the ethical, societal, and technological implications of AI systems. She underscores the importance of global regulations, human-centric decision-making, and the proactive management of biases and risks associated with AI deployment. Through her expert lens, Dr. Stoyanovich advocates for a future where AI is not only innovative but also equitable, transparent, and aligned with human values.

Julia is an Institute Associate Professor at NYU in both the Tandon School of Engineering, and the Center for Data Science. In addition she is Director of the Center for Responsible AI also at NYU. Her research focuses on responsible data management, fairness, diversity, transparency, and data protection in all stages of the data science lifecycle.

Episode Summary -

  1. The Definition of Responsible AI
  2. Example of ethical AI in the medical world - Fast MRI technology
  3. Fairness and Diversity in AI
  4. The role of regulation - What it can and can’t do
  5. Transparency, Bias in AI models and Data Protection
  6. The dangers of Gen AI Hype and problematic AI narratives from the tech industry
  7. The impotence of humans in ensuring ethical development
  8. Why “Responsible AI” is actually a bit of a misleading term
  9. What Data & AI leaders can do to practise Responsible AI

  continue reading

29 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play