Go offline with the Player FM app!
SE Radio 677: Jacob Visovatti and Conner Goodrum on Testing ML Models for Enterprise Products
Manage episode 494647366 series 215
Jacob Visovatti and Conner Goodrum of Deepgram speak with host Kanchan Shringi about testing ML models for enterprise use and why it's critical for product reliability and quality. They discuss the challenges of testing machine learning models in enterprise environments, especially in foundational AI contexts. The conversation particularly highlights the differences in testing needs between companies that build ML models from scratch and those that rely on existing infrastructure. Jacob and Conner describe how testing is more complex in ML systems due to unstructured inputs, varied data distribution, and real-time use cases, in contrast to traditional software testing frameworks such as the testing pyramid.
To address the difficulty of ensuring LLM quality, they advocate for iterative feedback loops, robust observability, and production-like testing environments. Both guests underscore that testing and quality assurance are interdisciplinary efforts that involve data scientists, ML engineers, software engineers, and product managers. Finally, this episode touches on the importance of synthetic data generation, fuzz testing, automated retraining pipelines, and responsible model deployment—especially when handling sensitive or regulated enterprise data.
Brought to you by IEEE Computer Society and IEEE Software magazine.
1034 episodes
SE Radio 677: Jacob Visovatti and Conner Goodrum on Testing ML Models for Enterprise Products
Software Engineering Radio - the podcast for professional software developers
Manage episode 494647366 series 215
Jacob Visovatti and Conner Goodrum of Deepgram speak with host Kanchan Shringi about testing ML models for enterprise use and why it's critical for product reliability and quality. They discuss the challenges of testing machine learning models in enterprise environments, especially in foundational AI contexts. The conversation particularly highlights the differences in testing needs between companies that build ML models from scratch and those that rely on existing infrastructure. Jacob and Conner describe how testing is more complex in ML systems due to unstructured inputs, varied data distribution, and real-time use cases, in contrast to traditional software testing frameworks such as the testing pyramid.
To address the difficulty of ensuring LLM quality, they advocate for iterative feedback loops, robust observability, and production-like testing environments. Both guests underscore that testing and quality assurance are interdisciplinary efforts that involve data scientists, ML engineers, software engineers, and product managers. Finally, this episode touches on the importance of synthetic data generation, fuzz testing, automated retraining pipelines, and responsible model deployment—especially when handling sensitive or regulated enterprise data.
Brought to you by IEEE Computer Society and IEEE Software magazine.
1034 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.