Artwork

Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Building an End-to-End Data Observability System at Netflix with Joseph Machado

38:54
 
Share
 

Manage episode 482862846 series 2053958
Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Building reliable data pipelines starts with maintaining strong data quality standards and creating efficient systems for auditing, publishing and monitoring. In this episode, we explore the real-world patterns and best practices for ensuring data pipelines stay accurate, scalable and trustworthy.

Joseph Machado, Senior Data Engineer at Netflix, joins us to share practical insights gleaned from supporting Netflix’s Ads business as well as over a decade of experience in the data engineering space. He discusses implementing audit publish patterns, building observability dashboards, defining in-band and separate data quality checks, and optimizing data validation across large-scale systems.

Key Takeaways:

.

(03:14) Supporting data privacy and engineering efficiency within data systems.

(10:41) Validating outputs with reconciliation checks to catch transformation issues.

(16:06) Applying standardized patterns for auditing, validating and publishing data.

(19:28) Capturing historical check results to monitor system health and improvements.

(21:29) Treating data quality and availability as separate monitoring concerns.

(26:26) Using containerization strategies to streamline pipeline executions.

(29:47) Leveraging orchestration platforms for better visibility and retry capability.

(31:59) Managing business pressure without sacrificing data quality practices.

(35:46) Starting simple with quality checks and evolving toward more complex frameworks.

Resources Mentioned:

Joseph Machado

https://www.linkedin.com/in/josephmachado1991/

Netflix | LinkedIn

https://www.linkedin.com/company/netflix/

Netflix | Website

https://www.netflix.com/browse

Start Data Engineering

https://www.startdataengineering.com/

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Great Expectations

https://greatexpectations.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

56 episodes

Artwork
iconShare
 
Manage episode 482862846 series 2053958
Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ppacc.player.fm/legal.

Building reliable data pipelines starts with maintaining strong data quality standards and creating efficient systems for auditing, publishing and monitoring. In this episode, we explore the real-world patterns and best practices for ensuring data pipelines stay accurate, scalable and trustworthy.

Joseph Machado, Senior Data Engineer at Netflix, joins us to share practical insights gleaned from supporting Netflix’s Ads business as well as over a decade of experience in the data engineering space. He discusses implementing audit publish patterns, building observability dashboards, defining in-band and separate data quality checks, and optimizing data validation across large-scale systems.

Key Takeaways:

.

(03:14) Supporting data privacy and engineering efficiency within data systems.

(10:41) Validating outputs with reconciliation checks to catch transformation issues.

(16:06) Applying standardized patterns for auditing, validating and publishing data.

(19:28) Capturing historical check results to monitor system health and improvements.

(21:29) Treating data quality and availability as separate monitoring concerns.

(26:26) Using containerization strategies to streamline pipeline executions.

(29:47) Leveraging orchestration platforms for better visibility and retry capability.

(31:59) Managing business pressure without sacrificing data quality practices.

(35:46) Starting simple with quality checks and evolving toward more complex frameworks.

Resources Mentioned:

Joseph Machado

https://www.linkedin.com/in/josephmachado1991/

Netflix | LinkedIn

https://www.linkedin.com/company/netflix/

Netflix | Website

https://www.netflix.com/browse

Start Data Engineering

https://www.startdataengineering.com/

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Great Expectations

https://greatexpectations.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

56 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Listen to this show while you explore
Play