1,759 subscribers
Go offline with the Player FM app!
Podcasts Worth a Listen
SPONSORED
Stealing Part of a Production Language Model with Nicholas Carlini - #702
Manage episode 441466240 series 2355587
Today, we're joined by Nicholas Carlini, research scientist at Google DeepMind to discuss adversarial machine learning and model security, focusing on his 2024 ICML best paper winner, “Stealing part of a production language model.” We dig into this work, which demonstrated the ability to successfully steal the last layer of production language models including ChatGPT and PaLM-2. Nicholas shares the current landscape of AI security research in the age of LLMs, the implications of model stealing, ethical concerns surrounding model privacy, how the attack works, and the significance of the embedding layer in language models. We also discuss the remediation strategies implemented by OpenAI and Google, and the future directions in the field of AI security. Plus, we also cover his other ICML 2024 best paper, “Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining,” which questions the use and promotion of differential privacy in conjunction with pre-trained models.
The complete show notes for this episode can be found at https://twimlai.com/go/702.
750 episodes
Stealing Part of a Production Language Model with Nicholas Carlini - #702
The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Manage episode 441466240 series 2355587
Today, we're joined by Nicholas Carlini, research scientist at Google DeepMind to discuss adversarial machine learning and model security, focusing on his 2024 ICML best paper winner, “Stealing part of a production language model.” We dig into this work, which demonstrated the ability to successfully steal the last layer of production language models including ChatGPT and PaLM-2. Nicholas shares the current landscape of AI security research in the age of LLMs, the implications of model stealing, ethical concerns surrounding model privacy, how the attack works, and the significance of the embedding layer in language models. We also discuss the remediation strategies implemented by OpenAI and Google, and the future directions in the field of AI security. Plus, we also cover his other ICML 2024 best paper, “Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining,” which questions the use and promotion of differential privacy in conjunction with pre-trained models.
The complete show notes for this episode can be found at https://twimlai.com/go/702.
750 episodes
All episodes
×

1 From Prompts to Policies: How RL Builds Better AI Agents with Mahesh Sathiamoorthy - #731 1:01:25


1 How OpenAI Builds AI Agents That Think and Act with Josh Tobin - #730 1:07:27


1 CTIBench: Evaluating LLMs in Cyber Threat Intelligence with Nidhi Rastogi - #729 56:18


1 Generative Benchmarking with Kelly Hong - #728 54:17


1 Exploring the Biology of LLMs with Circuit Tracing with Emmanuel Ameisen - #727 1:34:06


1 Teaching LLMs to Self-Reflect with Reinforcement Learning with Maohao Shen - #726 51:45


1 Waymo's Foundation Model for Autonomous Driving with Drago Anguelov - #725 1:09:07


1 Dynamic Token Merging for Efficient Byte-level Language Models with Julie Kallini - #724 50:32


1 Scaling Up Test-Time Compute with Latent Reasoning with Jonas Geiping - #723 58:38


1 Imagine while Reasoning in Space: Multimodal Visualization-of-Thought with Chengzu Li - #722 42:11


1 Inside s1: An o1-Style Reasoning Model That Cost Under $50 to Train with Niklas Muennighoff - #721 49:29


1 Accelerating AI Training and Inference with AWS Trainium2 with Ron Diamant - #720 1:07:05


1 π0: A Foundation Model for Robotics with Sergey Levine - #719 52:30


1 AI Trends 2025: AI Agents and Multi-Agent Systems with Victor Dibia - #718 1:44:59


1 Speculative Decoding and Efficient LLM Inference with Chris Lott - #717 1:16:30
Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.